Home Magazines Editors-in-Chief FAQs Contact Us

Rainfall runoff estimation using GIS and SCS-CN method for awash river basin, Ethiopia


PDF Full Text

Abstract

Understanding  hydrological  behavior  is  an  important  part  of  effective  watershed management and planning. Runoff resulted from rainfall is a component of hydrological behavior that is needed for efficient water resource planning. In this paper, GIS based SCS-CN runoff simulation model was applied to estimate rainfall runoff in Awash river basin. Global Curve Number (GCN250), Maximum Soil Water Retention (S) and Rainfall was used as an input for SCS-CN runoff simulation model. The final surface runoff values for the Awash river basin were generated on the basis of total annual rainfall and maximum soil water retention potential (S) of the year 2020. Accordingly, a runoff variation that range from 83.95 mm/year to a maximum of 1,416.75 mm/year were observed in the study region. Conversely, recently developed Global Curve Number (GCN250) data was tested with Pearson correlation coefficient to be used as an input for SCS-CN runoff simulation model. In doing so, predicted runoff generated in SCS-CN using GCN250 as a model input was validated with observed runoff obtained from station gauges in the study region. The results of validation show that, predicted runoff was well correlated with observed runoff with correlation coefficient of 0.9253. From this stand point, it is observed that the new GCN250 data can be used as an input for SCS-CN model to estimate rainfall runoff at basin level. Furthermore, correlation analysis was performed to explain the relationship between mean annual rainfall and surface runoff. The relationship between these two variables indicates a strong linear relationship with correlation coefficient of 0.9873.

Keywords

global curve number (GCN250), soil conservation service-curve number (SCS-CN), maximum soil water retention (S), runoff, geographic information system (GIS)

Testimonials